Hoffman Lab Microscopes

Nanoscale Imaging of Topological Materials: Sb and SmB₆

Jenny Hoffman

Experiments:

Mike Yee

Yang He

Jason Zhu

Soumyanarayanan

(Harvard)

Agency for Science, Technology and Research

Theory: Hsin Lin, Arun Bansil

SmB₆: Dae-Jeong Kim, Zach Fisk

Samples: Sb: Dillon Gardner, Young Lee

- Topological Insulators
- Scanning Tunneling Microscopy
- Nanoscale Band Structure
- Topological: Sb
- Insulator: SmB₆

My kids asked me...

A topological insulator is a material with...

conducting surface

insulating bulk

But what makes it topological?

Band Theory

Band Theory: Metal

V E 🖉 R I

Band Theory: Insulator

V E 🖉 R I

Spin-Orbit Coupling \rightarrow Band Inversion

VE RI

Spin-Orbit Coupling \rightarrow Band Inversion

→ topologically protected spin-polarized surface states

Why spin-polarized?

Band Theory: Insulator

V E 🕻 R

- 0. Free electrons in 2 dimensions: $H = E_0 + \frac{k^2}{2m^*}$
- 1. Rashba: Surface breaks symmetry $H_R = Ez$
- 2. Moving electron with velocity vsees *E*-field as $B \propto v \times E$

- 0. Free electrons in 2 dimensions: $H = E_0 + \frac{k^2}{2m^*}$
- 1. Rashba: Surface breaks symmetry $H_R = Ez$
- 2. Moving electron with velocity vsees *E*-field as $B \propto v \times E$
- 3. Spin-orbit coupling splits bands: $H_{SO} \propto (\nu \times E) \cdot \sigma$ \uparrow spin

VE

- 0. Free electrons in 2 dimensions: $H = E_0 + \frac{k^2}{2m^*}$
- 1. Rashba: Surface breaks symmetry $H_R = Ez$
- 2. Moving electron with velocity vsees *E*-field as $B \propto v \times E$
- 3. Spin-orbit coupling splits bands: $H_{SO} \propto (\nu \times E) \cdot \sigma$ momentum spin
- 4. $k \cdot p$ theory: expand in small k around Γ point $H = E_0 + \frac{k^2}{2m^*} + v(k_x\sigma_y - k_y\sigma_x)$

V E 🎽 R

V E 🎽 R

- 0. Free electrons in 2 dimensions: $H = E_0 + \frac{k^2}{2m^*}$
- 1. Rashba: Surface breaks symmetry $H_R = Ez$
- 2. Moving electron with velocity vsees *E*-field as $B \propto v \times E$
- 3. Spin-orbit coupling splits bands: $H_{SO} \propto (\nu \times E) \cdot \sigma$ momentum
- 4. $k \cdot p$ theory: expand in small k around Γ point $H = E_0 + \frac{k^2}{2m^*} + (v_0 + \alpha k^2)(k_x \sigma_y - k_y \sigma_x)$ new term to bend band down

VE RI TAS FARVARD

- 0. Free electrons in 2 dimensions: $H = E_0 + \frac{k^2}{2m^*}$
- 1. Rashba: Surface breaks symmetry $H_R = Ez$
- 2. Moving electron with velocity vsees *E*-field as $B \propto v \times E$
- 3. Spin-orbit coupling splits bands: $H_{SO} \propto (v \times E) \cdot \sigma$ momentum spin

VE RI TAS FARVARD

- 0. Free electrons in 2 dimensions: $H = E_0 + \frac{k^2}{2m^*}$
- 1. Rashba: Surface breaks symmetry $H_R = Ez$
- 2. Moving electron with velocity vsees *E*-field as $B \propto v \times E$
- 3. Spin-orbit coupling splits bands: $H_{SO} \propto (v \times E) \cdot \sigma$ momentum spin

4. $k \cdot p$ theory: expand in small k around Γ point $H = \frac{k^2}{2m^*} + (\nu_0 + \alpha k^2)(k_x \sigma_y - k_y \sigma_x) + \frac{1}{2}\lambda(k_+^3 + k_-^3)$

Liang Fu's 5-parameter Hamiltonian [PRL 101, 266801 (2009)]

Applications of Topological Insulators

1. Spintronics

2. Topological quantum computing

Majorana fermion = self-antiparticle (non-Abelian anyon)

"braid" the world-lines \rightarrow information is encoded topologically

Topological-superconductor interface

Fu & Kane, PRL 100, 096407 (2008)

Metrics for topological spintronics devices

1. Enhance spin-momentum locking Metric: Spin-Orbit Coupling (v_0)

2. Reduce scattering Metric: Mean Free Path (*l_f*)

H. Beidenkopf, Nat. Phys. 2011

3. Reduce vulnerability to external B& magnetic impurities:

Metric: g-factor

Need a probe which measures: nanoscale, B-dependent, filled & empty states...

Drain

Topologica Insulator

Source

- Topological Insulators
- Scanning Tunneling Microscopy
- Nanoscale Band Structure
- Topological: Sb
- Insulator: SmB₆

Scanning Tunneling Microscopy

VE RI

Scanning Tunneling Microscopy

Types of STM Measurements

Momentum Information from STM?

k,

Clean Samples \rightarrow LLs

Impurities \rightarrow QPI

Crommie, Nature 363, 524 (1993)

 $a = \kappa$

Impurity

Measure $q(\varepsilon)$

 \rightarrow infer $k(\varepsilon)$

Dirac dispersion

$$\rightarrow \varepsilon_N \propto \sqrt{e\hbar v_F NB}$$

Single Layer Graphene

 $v_{LL} = 1.07 \times 10^6 \text{ m/s} \xleftarrow{40\% \text{ Discrepancy!}}{v_{QPI}} = 1.5 \times 10^6 \text{ m/s}$

VE RI TAS PERVARD

- Topological Insulators
- Scanning Tunneling Microscopy
- Nanoscale Band Structure
- Topological: Sb
- Insulator: SmB₆

Sb(111): Topography

Sb(111): Spectroscopy and Band Structure

Surface states: $H = E_D + \frac{k^2}{2m^*} + (v_0 + \alpha k^2)(k_x \sigma_y - k_y \sigma_x) + \frac{1}{2}\lambda(k_+^3 + k_-^3)$

Sb(111): Spectroscopy and Band Structure

Surface states: $H = E_D + \frac{k^2}{2m^*} + (v_0 + \alpha k^2)(k_x \sigma_y - k_y \sigma_x) + \frac{1}{2}\lambda(k_+^3 + k_-^3)$

Spectroscopy in Magnetic Field

Landau Levels

Landau Levels

Let's focus on Dirac-like first...

Landau Levels: Data

Hold that thought...

$$\varepsilon_N = \varepsilon_D + \sqrt{e\hbar v_{LL} NB}$$

 $v_{LL} = 6.38 \times 10^5 \text{ m/s}$

V E 🎽 R

Quasiparticle Interference Imaging

(experimentalist)

unperturbed H₂O

perturbation

2-dim band structure: topographic map for e⁻

QPI in Sb(111)

Surface states: $H = E_D + \frac{k^2}{2m^*} + (v_0 + \alpha k^2)(k_x \sigma_y - k_y \sigma_x) + \frac{1}{2}\lambda(k_+^3 + k_-^3)$

Quasiparticle Interference on Sb(111)

Sb(111) Topography

dI/dV (density of states)

Quasiparticle Interference on Sb(111)

LL & QPI: Dispersion Comparison

 $v_{QPI} = 6.08 \times 10^5 \text{ m/s}$ $v_{LL} = 6.38 \times 10^5 \text{ m/s}$

 \rightarrow agree within 3%

- STM Advantages
 - Filled and empty states
 - Nontrivial band structure
 - sub-meV energy resolution
 - B-field dependence
 - Nanoscale spatial resolution

- Topological Insulators
- Scanning Tunneling Microscopy
- Nanoscale Band Structure
- Topological: Sb
- Insulator: SmB₆

Metrics for topological devices

Drain

Topological Insulator

Source

1. Enhance spin-momentum locking

Metric: Spin-Orbit Coupling (v_0)

2. Reduce scattering Metric: Mean Free Path (*l*_f)

H. Beidenkopf, Nat. Phys. 2011

3. Reduce vulnerability to external B& magnetic impurities:

Metric: g-factor

Reconstruct multi-component band structure

Reconstruct multi-component band structure

Reconstruct multi-component band structure

$$H = \frac{E_D}{2m^*} + \frac{k^2}{2m^*} + (v_0 + \alpha k^2)(k_x \sigma_y - k_y \sigma_x) + \frac{1}{2}\lambda(k_+^3 + k_-^3)$$

 $E_D = -210 \text{ mV}; \quad m^* = 0.1 m_e; \quad v_0 = 0.51 \text{ eV} \cdot \text{\AA};$ $\alpha = 110 \text{eV} \cdot \text{\AA}^3; \quad \lambda = 230 \text{ eV} \cdot \text{\AA}^3$

Metrics for topological devices

Drain

Topological Insulator

Source

1. Enhance spin-momentum locking Metric: Spin-Orbit Coupling ($v_0=0.5 \text{ eV}\cdot\text{\AA}$)

2. Reduce scattering Metric: Mean Free Path (*l*_f)

H. Beidenkopf, Nat. Phys. 2011

3. Reduce vulnerability to external B& magnetic impurities:

Metric: g-factor

LL 'Sharpness' & Lifetime Broadening

• LLs are sharpest at ε_F

Sb(111) mean free path $\ell \sim \frac{\hbar}{\Gamma(\varepsilon_F)} \cdot v_F$

Sample 1: $\lambda_F \simeq 65$ nm Sample 2: $\lambda_F \simeq 59$ nm V E 🖌 R I

LL 'Sharpness' & Lifetime Broadening

Comparable to distance between strong surface defects

.

20 nm

• LLs are sharpest at ε_F

Sb(111) mean free path
$$\ell \sim \frac{\hbar}{\Gamma(\varepsilon_F)} \cdot v_F$$

Sample 1: $\lambda_F \approx 65$ nm Sample 2: $\lambda_F \approx 59$ nm

H. Beidenkopf, Nat. Phys. 2011

V E 🥇 R 🛛

Metrics for topological devices

Drain

Topological Insulator

Source

1. Enhance spin-momentum locking Metric: Spin-Orbit Coupling ($v_0=0.5 \text{ eV}\cdot\text{\AA}$)

2. Reduce scattering Metric: Mean Free Path (*l_f*~60 nm)

H. Beidenkopf, Nat. Phys. 2011

3. Reduce vulnerability to external B& magnetic impurities:

Metric: g-factor

Quantify *g*-factor from low-energy LLs

Need to look at low N to get the *g*-factor...

Landau level identification in Sb(111)

Metrics for topological devices

Drain

Topological Insulator

Source

1. Enhance spin-momentum locking Metric: Spin-Orbit Coupling ($v_0=0.5 \text{ eV}\cdot\text{\AA}$)

2. Reduce scattering <u>Metric: Mean Free Path (*l_f*~60 nm)</u>

H. Beidenkopf, Nat. Phys. 2011

3. Reduce vulnerability to external B
& magnetic impurities:

Metric: g-factor (g = 12.8)

Robust Surface States in Semimetal Sb

Μ

Topological Semimetal vs. Insulator

Sb: bulk semimetal

Flat topography, electronic modulations primarily around impurities

100 mV, 1 GΩ

Bi_{0.92}Sb_{0.08}: bulk insulator Large chemical potential fluctuations

Roushan, Nature 460, 1106 (2009)

Sb vs. "canonical" Bi₂Se₃

Zhu, ... Elfimov, Damascelli, PRL 107, 186405 (2011) Zhu, ... Elfimov, Damascelli, PRL 110, 216401 (2013)

\rightarrow Sb is an excellent platform for exploring topological proximity effects

- Topological Insulators
- Scanning Tunneling Microscopy
- Nanoscale Band Structure
- Topological: Sb
- Insulator: SmB₆

Topological Kondo Insulator

Topological Kondo Insulator

SmB₆ as possible TKI

Resistivity

Hybridization gap in SmB₆

Transport:

 Δ = 4.6 meV Menth, PRL 22, 295 (1969) Δ = 11.2 meVFlachbart, PRB 64, 085104 (2001) Δ = 3.47 meVWolgast, PRB 88, 180405 (2013)

Reflectivity & transmissivity:

 $\Delta = 4.7 \text{ meV}$ *Travaglini, PRB 29, 893 (1984)* $\Delta = 19 \text{ meV}$ *Gorshunov, PRB 59, 1808 (1999)*

Raman spectroscopy:

 $\Delta = 36 \text{ meV}$ Nyhus, PRB 52, R14308 (1995)

Planar tunneling / point contact spectroscopy:

 $\Delta = 2.7 \text{ meV}$ Güntherodt, PRL 49, 1030 (1982)

 $\Delta = 14 \text{ meV}$ Amsler, PRB 57, 8747 (1998)

 $\Delta = 22 \text{ meV}$ Flachbart ,PRB 64, 085104 (2001)

 $\Delta = 18 \text{ meV}$ Zhang, PRX 3, 011011 (2013)

ARPES: (seven contradictory papers in last few months!) Δ ranges from < 5 meV (entirely below E_F) to > 20 meV (spanning E_F)

SmB₆ ARPES

But where is the hybridization gap??

V E R

SmB₆ ARPES

⁶ Н _{7/2} (meV)	⁶ H _{5/2} (meV)	Δ (meV)	Spans <i>E_F</i> ?	In-gap state?	Reference
-200	-15 (X) to -20 (Γ)	~ 15	YES	-4 to -8 meV, weakly dispersing	Miyazaki, PRB 86, 075105 (2012)
-160	-20	~ 20	YES	2 dispersing bands	Xu (H. Ding), PRB 88, 121102 (2013)
-150	-18	> 18	YES	2 dispersing bands, circular dichroism	Jiang (D.L. Feng), Nat Com 4, 3010 (2013)
-150	-15	14	NO	-4 meV, non-dispersing	Neupane (Z. Hasan), Nat Com 4, 2991 (2013)
-170	-40	< 5 meV	NO	cannot resolve	Frantzeskakis (M. Golden), PRX 3, 041024 (2013)
-150	-20			$\sim E_F$, $\sim -2 \text{ eV}$ dispersing	Zhu (A. Damascelli), PRL 111, 216402 (2013)
-150	-18				Suga, JPSJ 83, 014705 (2014)
					- Kondo inculator (2)

f band energies

SmB₆ is not even a Kondo insulator !?!?!

 \rightarrow Need reliable, spatially resolved, empty + filled state measure of Δ

SmB₆ single crystal

- grown by Al flux method
- cleaved in cryogenic UHV
- exposes (001) plane
- surface B:Sm ratio > 6:1

\rightarrow insert into STM

SmB₆ atomic surface morphologies

V E 🞽 R I

1x1 surfaces: Polarity-driven surface states?

Zhu & Damascelli, PRL 111, 216402 (2013)

2x1 non-polar: SmB₆ hybridization gap?

Can we just read Δ off from the spectrum?

Tunneling into Kondo impurity: Fano resonance

Madhavan, Science 280, 567 (1998)

Interference between two tunneling channels gives Fano resonance:

$$\frac{dI}{dV}(V) \propto \frac{(q+\epsilon)^2}{1+\epsilon^2}$$

q = ratio between tunneling channels $\epsilon = (eV - \epsilon_0)/w$; ϵ_0 = bare resonance; w = resonance width

Tunneling into a Kondo Lattice

Dirty Kondo lattice: Fano is the limiting case

$$\frac{dI}{dV}(V) \propto \frac{(q+\epsilon)^2}{1+\epsilon^2}$$

Yang, PRB 79, 241107 (2009) Wolfle, Dubi & Balatsky, PRL 105, 246401 (2010)

Clean Kondo lattice: analytic model, structureless conduction band

$$\int_{t_f} \int_{t_c} G^{KL}(eV) = \left(1 + \frac{v}{eV - E_0^f} \frac{t_f}{t_c}\right)^2 \ln\left[\frac{eV + D_1 - \frac{v^2}{eV - E_0^f}}{eV - D_2 - \frac{v^2}{eV - E_0^f}}\right] + \frac{D_1 + D_2}{eV - E_0^f} \left(\frac{t_f}{t_c}\right)^2$$

$$\int_{(\vec{\sigma} \cdot \vec{S})e^-} \int_{e^-} \int_{e^-}$$

Clean Kondo lattice: computational model, realistic conduction band

$$\mathbf{t_f} \underbrace{\mathbf{N_c}}_{\mathbf{R} \ \mathbf{r}} = \operatorname{Im} \left[G_c(k, \omega) \right]; \quad N_f = \operatorname{Im} \left[G_f(k, \omega) \right]; \quad N_{cf} = \operatorname{Im} \left[G_{cf}(k, \omega) \right]; \\ \frac{dI}{dV} \propto N_c + \left(\frac{t_f}{t_c} \right)^2 N_f + 2 \left(\frac{t_f}{t_c} \right) N_{cf}$$

Figgins & Morr, PRL 104, 187202 (2010)

SmB₆ bands from ARPES

Figgins vs. Maltseva Models

Both models: $\gamma = k_B T$ (T = 8 K)

$$\frac{t_f}{t_c} = -0.055$$

$$\Rightarrow v \sim 155 \text{ meV in both models}$$

$$E_k^{\pm} = \frac{1}{2} \left(E_k^c + E_k^f \right) \pm \sqrt{\frac{1}{2} \left(E_k^c - E_k^f \right)^2 + v^2}$$

 \boldsymbol{Z}

V E 🖉 R I TAS

Recapturing the band structure from dI/dV

 $\rightarrow dI/dV$ is dominated by the bare conduction band \rightarrow gap in STM dI/dV is the true hybridization gap

V E 🕻 R I

Kondo gap closes at T > 50K

VE RI
Comparison to "Point Contact Spectroscopy"

Zhang, PRX 3, 011011 (2013)

 \rightarrow prominent peak is on opposite side

In 3-dim, "outside shell" will give more prominent peak than "inside shell"

→ Expect conduction band peak on negative side

Electron vs. Hole

All 3 models show $dI/dV \approx 0$ in gap (< 10% of background)

Comparison to ARPES

⁶ H _{7/2} (meV)	6 H₅_{5/2} (meV)	Δ (meV)	Spans <i>E_F</i> ?	In-gap state?	2x1 ?	Reference
-200	-15 (X) to -20 (Γ)	~ 15	YES	-4 to -8 meV, weakly dispersing	yes (LEED)	Miyazaki, PRB 86, 075105 (2012)
-160	-20	~ 20	YES	2 dispersing bands	yes (folding)	Xu (H. Ding), PRB 88, 121102 (2013)
-150	-18	> 18	YES	2 dispersing bands, circular dichroism	yes (folding)	Jiang (D.L. Feng), Nat Com 4, 3010 (2013)
-150	-15	14	NO	-4 meV, non-dispersing	?	Neupane (Z. Hasan), Nat Com 4, 2991 (2013)
-170	-40	< 5 meV	NO	cannot resolve	no (LEED)	Frantzeskakis (Golden), PRX 3, 041024 (2013)
-150	-20			$\sim E_F$, $\sim -2 \text{ eV}$ dispersing	no (LEED)	Zhu (Damascelli), PRL 111, 216402 (2013)
-150	-18				?	Suga, JPSJ 83, 014705 (2014)

f band energies

 \rightarrow partial 2x1 surface gives the -8 meV state:

this is the f band itself, not an "in-gap" state!!

→ complete 1x1 surface causes band-bending, looks like Kondo metal?

SmB₆ conclusions

1. Band bending on varying surface morphologies

Need to decompose dI/dV into DOS & interference

2. Hybridization gap spans E_F \rightarrow Kondo insulator

3. Residual 'in-gap' spectral weight

Next step: QPI to look for Dirac cone

arxiv:1308.1085

Conclusions

- Nanoscale Band Structure
 - Quasiparticle Interference
 - Landau Quantization
 - \rightarrow Reconciled!!

- Topological surface states in Sb:
 - mean free path $\rightarrow \ell = 65 \text{ nm}$
 - spin-orbit coupling → $\nu_0 = 0.51 \text{ eV} \cdot \text{\AA}$
 - o g-factor $\rightarrow g = 12.8$
- SmB₆: Topological Kondo <u>Insulator</u>?
 - Hybridization gap spans $E_F \rightarrow$ Kondo insulator
 - In-gap spectral weight \rightarrow topological surface state?

