Imaging the New Iron-Arsenic High-T_c Superconductors

Yi Yin Martin Zech Tess Williams XiangFeng Wang Gang Wu Xianhui Chen Jenny Hoffman

Thanks to:

Superconductors: Brief History

Iron Pnictides: Revolution in Superconductivity!

- \rightarrow What are the big outstanding questions?
- \rightarrow Where do we stand in answering these questions?

STM applied to iron pnictides

- surface considerations
- superconducting gap measurement
- vortex mapping

Direct comparison to cuprates

Outlook

2 Properties of Superconductors

1. Vanishing of electrical resistivity (by Cooper pairing)

Mercury 0.150.125 σ Resistance (Ohms) 0.10 0.075 0.050.0250.00 4.24.04.1 4.3 4.4Temperature Kelvin

 Expulsion of magnetic field (by shielding currents)

Kamerlingh-Onnes, 1911

Meissner, 1933

2 Types of Superconductors

 \rightarrow Type II Superconductors are generally more useful

VERI

Length Scales in Superconducting Vortices

Vortex Challenges

Normal electrons in vortex core cause dissipation when moved

Apply current I: Cooper pairs flow without dissipation

→need some mechanism to *pin* vortices in place

Center of vortex: superconductivity is destroyed → costs energy!

> so introduce defects where superconductivity is already compromised → avoid paying energy cost twice!

Nb47wt%Ti

review: Scanlan, IEEE <u>92</u>, 1639 (2004)

Applications of Superconductors

Magnetic Resonance Imaging (MRI)

Large Hadron Collider (LHC) particle physics research: need large magnets to accelerate protons in 4.3-km ring

A Long History of Superconductivity

- 1911 Kamerlingh Onnes first superconductivity in Hg
- 1933 Meissner superconductors screen B-field
- 1952 Abrikosov predicted vortices
- 1957 Cooper, Bardeen & Schriefer theoretical understanding
- 1962 Josephson field-dependent tunneling (SQUIDS)

Still not so many practical applications...

→1913 Nobel Prize

- → 2003 Nobel Prize
- → 1972 Nobel Prize
- → 1973 Nobel Prize

History of Superconducting T_c

VE RI

Pairing Symmetry

40

'Normal' State

Conventional Superconductors Normal state: metallic; Fermi liquid

Cuprate Superconductors Doped antiferromagnetic insulator

Pseudogap AF insulator Carrier concentration

e.g.
Bi
$$_2$$
Sr $_2$ CaCu $_2$ O $_8$
Bi $_2$ Sr $_2$ CaCu $_2$ O $_8$
CuO $_2$
Ca
CuO $_2$
Ca
CuO $_2$
Ca

BiO

— oxygen

(each Oxygen is thought to donate 2 holes)

3-Dimensional Cuprate Phase Diagram

Too Much Phase Space

VE RI

Applications of Cuprate Superconductors

Maglev Trains: currently in operation at Shanghai Pudong Airport

American Superconductor: more efficient motors & generators e.g. this 5 MegaWatt motor is ~30% weight, 50% size of conventional motor \rightarrow great for ships, airplanes!

Applications of Cuprate Superconductors

American Superconductor: cooled cables for power transmission

→ make better use of bandwidth
→ put relay stations farther apart
→ reduce signal strength (safer cell phones)

Superconductor Technologies

Projected World Markets

Semiconductors:

Material Considerations

CuO

BaO

 CuO_2

Y

 CuO_2

BaO

Advantages:

- cheaper materials
- tapes are aligned on 2 axes
 - →cuts down on grain boundaries
- anisotropy is only ~7
- non-vacuum manufacture processes

review: Scanlan, IEEE 92, 1639 (2004)

CuO

Trouble With Vortices

Larbalestier, Nature <u>414</u>, 368 (2001)

2008: A New Revolution in Superconductivity

Kamihara et al, J. Am. Chem. Soc. 130, 3296 (Feb 23, 2008)

Why the excitement?

1) Physics

- A second chance to get it right!
- A foil for cuprates

2) Applications

- Low anisotropy
- High H_{c2}
- Strong pinning

150

SmO_{0.7}F_{0.3}FeAs wires fabricated by powder-in-tube method $T_c=52K$, J_c up to 3900 A/cm², extrapolated H_{c2} up to 120T (J_c within grains ~ $2x10^5$ A/cm²)

Zhaoshun Gao, Super. Sci. Tech. 21, 112001 (2008)

anon Tmin

Tonset

$LaFeAsO_{1-x}F_{x}$

A Short History of Iron-Pnictide Superconductivity

"Tsunami of Papers"

(1) What is the pairing symmetry?

(2) What is the role of spin?

(3) Quantify & understand H_{c2} and vortex pinning?

(1) What is the pairing symmetry?

(2) What is the role of spin?

(3) Quantify & understand H_{c2} and vortex pinning?

Theory: What is the pairing symmetry?

Scanning SQUID: what is the pairing symmetry?

 \rightarrow trap fractional flux!

 $NdFeAsO_{0.94}F_{0.06}$ (T_c = 48 K) No Fractional Vortices Observed!

zΛ

Hicks, ... Moler, JPSJ <u>78</u>, 013708 (2009)

ARPES: What is the pairing symmetry?

Kondo, PRL 101, 147003 (2008)

Converging on s± symmetry?

figures borrowed from from Hicks, ... Moler, JPSJ 78, 013708 (2009)

BUT... Plenty of Evidence For Gap Nodes

• Specific heat in LaFeAsO_{0.9} $F_{0.1-\delta_1}$ [Mu et al, Chin. Phys. Lett. 25, 2221 (2008)] • H_{c1} measurements in LaFeAsO_{0.9} $F_{0.1}$ [Ren et al, arXiv: 0804.1726] • point contact spectroscopy in LaFeAsO_{0.9} $F_{0.1-\delta}$ [Shan et al, Europhys. Lett. 83, 57004 (2008)] • μ SR in LaFeAsO_{1-v}F_v [Luetkens et al, Phys. Rev. Lett. 101, 097009 (2008)] NMR in LaFeAsO_{1-x}F_x [Ahilan et al, Phys. Rev. B 78, 100501 (2008), Grafe et al, Phys. Rev. Lett. 101, 047003 (2008), Nakai et al, J. Phys. Soc. Jap. 77, 073701 (2008)] NMR in LaFeAsO_{1-v} and NdFeAsO_{1-v} [Mukuda *et al,* J. Phys. Soc. Jap. 77, 093704 (2008)] NMR in FeSe [Kotegawa et al, J. Phys. Soc. Jap. 77, 113703 (2008)] Thermal Hall conductivity in Ba_{1-x}K_xFe₂As₂ [Checkelsky et al, arXiv: 0811.4668] • Penetration depth λ in Ba(Co_{0.07}Fe_{0.93})₂As₂ [Gordon *et al*, arXiv: 0810.2295] • Penetration depth λ in LaFePO [Fletcher *et al*, arXiv: 0812.3858]

(1) What is the pairing symmetry?

(2) What is the role of spin?

(3) Quantify & understand H_{c2} and vortex pinning?

Neutron Scattering: What is the role of spin?

x=0: Structural ordering: 138K

LaO_{1-x}F_xFeAs

x=0: Collinear antiferromagnetic spin ordering: 137K Doping suppresses both, allows superconductivity.

de la Cruz et al, Nature 453, 899 (2008)

Cuprate vs. Pnictide Spin Comparison

Inelastic Neutron Scattering

Lumsden, arXiv:0811:4755

VER

(1) What is the pairing symmetry?

(2) What is the role of spin?

(3) Quantify & understand H_{c2} and vortex pinning?

Vortex pinning: low anisotropy, high H_{c2}

Cuprate Superconductors

Pnictide Superconductors

strong pinning, speculation that it comes from nanoscale pinning sites, e.g. Co dopant inhomogeneities \rightarrow need a local tool to study these materials!

Yamamoto, APL 94, 062511 (2009)

(1) What is the pairing symmetry?

- (2) What is the role of spin? \rightarrow will have to wait...
- (3) Quantify & understand H_{c2} and vortex pinning?

Introduction to STM

Introduction to STM

Introduction to STM

$Ba(Co_xFe_{1-x})_2As_2$ Phase Diagram

Chu et al, Phys. Rev. B 79, 014506 (2009)

Resistivity of our $Ba(Co_xFe_{1-x})_2As_2$

single crystals grown by Prof. XianHui Chen

Atomic Resolution Topography

 $Ba(Co_{x}Fe_{1-x})_{2}As_{2}$ (x=0.1 nominal, T_c=25.3K)

Ba(Co_xFe_{1-x})₂As₂ cleavage plane?

 \rightarrow top Ba layer has charge 1+

 \rightarrow top As layer has charge 1-

1/2 Ba removed, 1/2 Ba remain?

 \rightarrow top layer is charge neutral

Fourier Transform Analysis

Raw data:

Fourier transform

VE RI

inverse Fourier transform

Ba As

Gap Mapping

measurements at T=6K; $k_B T = 0.5 \text{ meV}$ dV modulation = 1.5 meV

 $\overline{\Delta}$ = 6.25 ± 0.73 meV (12% variation)

Topography

1.5 Å

Vortices at 9T

dI/dV at 5 mV

(approximate

coherence

peak energy)

20 nm

3.0 nS

Vortices at 6T

dI/dV at 5 mV

(approximate

coherence

peak energy)

20 nm

3.0 nS

0.5 nS

Flux Measurement

Flux Measurement

average vortex area = 228 nm² $\rightarrow \phi(9T) = 2.05 \times 10^{-15} \text{ T} \cdot \text{m}^2$

average vortex area = 362 nm² $\rightarrow \phi(6T) = 2.17 \times 10^{-15} \text{ T} \cdot \text{m}^2$

Single magnetic flux quantum: $\Phi_0 = 2.07 \times 10^{-15} \text{ T} \cdot \text{m}^2$

Vortex pinning possibilities

(1) no strong pinners inter-vortex forces dominate \rightarrow lattice formation

(2) strong pinners exist
 low anisotropy
 → vortices bend slightly
 to accommodate pinners

(3) strong pinners exist
 high anisotropy
 → vortices pancake
 each pancake pins independently

ideal case for applications

 $Bi_2Sr_2CaCu_2O_8$

NbSe₂

Are Vortices Pinned to Surface Impurities?

Are Vortices Pinned to Surface Impurities?

Vortex pinning possibilities

(1) no strong pinners
 inter-vortex forces dominate
 → lattice formation

NbSe₂

(2) strong pinners exist
 low anisotropy
 → vortices bend slightly
 to accommodate pinners

(3) strong pinners exist
high anisotropy
→ vortices pancake
each pancake pins independently

Ba(Co_xFe_{1-x})₂As₂

 $Bi_2Sr_2CaCu_2O_8$

- We have a superconducting gap, in agreement with ARPES
- We have vortices, which are strongly pinned in bulk

Vortex Spectroscopy

dV modulation = 1.5 meV

Coherence Length

Note: this ξ_0 translates to H_{c2}=43T [close to 50T extrapolated, Yamamoto, APL 94, 062511 (2009)]

Compare to Conventional *s*-wave Vortices

Hess, PRL <u>62</u>, 214 (1989)

 $T_c = 25 \text{ K}; \text{ measurement } T = 6 \text{ K}$ $\rightarrow T \sim T_c/4$ $T_c = 7.2$ K; measurement T = 1.45 K → T ~ $T_c/5$ Clean Limit

Residual resistivity: $\rho_0 = 0.23 \text{ m}\Omega \cdot \text{cm}$ Hall coefficient: $R_H = 11 \times 10^{-9} \text{ m}^3/\text{C}$

bulk values, measured by Xianhui Chen

 \rightarrow electronic mean free path:

$$\ell = \hbar (3\pi^2)^{1/3} / (e^2 n^{2/3} \rho_0) \sim 81 \text{ Å}$$

Compare to coherence length: $\xi_0 = 27.6 \text{ Å}$

 \rightarrow Clean limit

 \rightarrow Wouldn't expect suppression of *s*-wave vortex core states

Compare to *d*-wave Vortex Spectroscopy

measurements at T=6K; $k_BT = 0.5 \text{ meV}$ dV modulation = 1.5 meV

Maggio-Aprile, PRL <u>75</u>, 2754 (1995)

Compare to Theoretical *d*-wave Vortex Shape

BaCo_xFe_{2-x}As₂

1.5 0.5 0 -5 X 5 5 5 5

Ichioka, PRB <u>53</u>, 15316 (1996)

Franz & Tesanovic, PRB <u>53</u>, 15316 (1996)

Are Vortices Isotropic?

Filter impurities

STM To-Do List

 Better surface characterization: cleave temperature dependence, a la Pennec et al, PRL 101, 216103 (2008)

 Data at lower T, to resolve multiple gaps, see how each behaves in field
 → STM currently off-line for upgrade to ³He fridge

STM To-Do List

• Quasiparticle interference

s± symmetry scenario: predicted scattering from magnetic impurities

- $q=(2\pi,0)$ scattering \rightarrow STRONG
- $q=(\pi,\pi)$ scattering \rightarrow weak

[Wang, Zhai, D. H. Lee, EPL, 85, 37005 (2009)]

[Note: Pereg-Barnea & Franz similarly predicted for d-wave scenario, +/+ scattering enhanced in B, +/- scattering unaffected by B PRB 78, 020509 (2008).]

Repeat impurity measurements, compare to preliminary theory
 [Michael Lawler, Eun-Ah Kim]

• Compare vortex core state measurements to theory [J.X. Zhu, C.S. Ting]

Cuprate-Pnictide Comparison

	Cuprate: $Bi_2Sr_2CaCu_2O_{8+d}$	Pnictide: BaCo _x Fe _{2-x} As ₂
phase diagram	entropy ent	150 (X) and 50 Magnetic & structural order 0.00 0.02 0.04 0.08 0.10 0.12 Ni, Canfield, et al, arXiv:0811.1767
ground state	antiferromagnetic Mott insulator	itinerant antiferromagnet semimetal
gap symmetry	<i>d</i> -wave	s± ??
anisotropy, γ	~ 50	~ 1-3
optimal T _c	91 K	25.3 K

Cuprate-Pnictide Comparison

	Cuprate: Bi ₂ Sr ₂ CaCu ₂ O _{8+d}	Pnictide: BaCo _x Fe _{2-x} As ₂
superconducting gap, Δ	Δ ~ 33 meV 2 Δ /k _B T _c ~ 6-10	Δ = 6.25 meV 2 Δ /k _B T _c = 5.73
gap inhomogeneity	σ ~ 7 meV σ/Δ ~ 21%	σ = 0.73 meV σ/Δ = 12%
coherence length, ξ_0	2.2 nm	2.7 nm
vortex pinning	vortices pinned to surface impurities	Vortices NOT pinned to surface impurities

Scanning Probe Microscopy

Spin-Polarized STM

Magnetic Force Microscope

STM

all of the data in this talk

coming on line in the next 6 months - year