Vortices in Classical Systems

Vortices in Quantum Systems

⁴He-II vortices:

G. A. Williams, R. E. Packard, Phys. Rev. Lett. 33, 280 (1974)

Checkerboards

vortices:

in Bi₂Sr₂CaCu₂O_{8+x}

Hoffman et al, Science (2002)

Single Vortex Manipulation in Superconducting Nb

Eric Straver Jenny Hoffman Dan Rugar Kathryn Moler

Vortices in Nb Film Cooled to 5.3K in 100G

Part I: eliminate uncontrolled vortex motion

- bigger magnets
- efficient power lines
- quieter sensors & circuits

Part II: controlled single-vortex manipulation

- model for soft condensed matter
- vortex entanglement
- vortex ratchet automaton
- Luttinger liquid

Part I: eliminate uncontrolled vortex motion

Motivation: eliminate uncontrolled vortex motion

Motivation: eliminate uncontrolled vortex motion

Motivation: eliminate uncontrolled vortex motion

Vortex Pinning Measurements: Bulk Transport

Vortex Pinning Measurements: Bulk Transport

Examples of Previous Single Vortex Depinning Force Measurements with Transport Current

FIG. 1. Illustration of the vortex configuration trapped in the junction for $B_{\pm cool} = 0.016$ G. The misaligned primary-secondary vortex is shown near the center, and the primary-only vortex is sketched at the left.

FIG. 2. Diffraction-pattern change for a small jump of the primary-only vortex in the **x** direction. Solid circles are for the vortex position (-0.59, 0.10) and open circles are for (-0.63, 0.10).

Cabrera and coworkers 1992

FIG. 2. (a) Current produces a Lorentz force on vortex. (b) SQUID response to vortex depinning by a current ramp through the chip (simulation).

+ several other groups

Examples of Previous Single Vortex Depinning Force Measurements with Transport Current

FIG. 2. Diffraction-pattern change for a small jump of the primary-only vortex in the **x** direction. Solid circles are for the vortex position (-0.59, 0.10) and open circles are for (-0.63, 0.10).

FIG. 2. (a) Current produces a Lorentz force on vortex. (b) SQUID response to vortex depinning by a current ramp through the chip (simulation).

+ several other groups

Magnetic Force Microscopy

Force between tip and sample:

 $\mathbf{F} = \nabla \big(\mathbf{m} \cdot \mathbf{B} \big)$

Image cantilever resonant frequency

 $\Delta f_0 \sim dF_z/dz$

better signal-to-noise

Vertical force gradient \rightarrow imaging Horizontal force \rightarrow manipulation

Pros and Cons of MFM

Tip Geometry Con: Imperfectly known *Pro*: Up to 20 nm spatial resolution

Signal to Noise Con: Not as good as SQUIDs, Hall probes Pro: Good enough to see vortices

Other signals Con: See atomic forces too Pro: Simultaneous topography

Invasiveness Con: Tip exerts force on vortex Pro: Tip exerts force on vortex

Vortex Depinning in Nb

Colormap adjusted separately for each image.

Vortex Pinning vs. Height at T = 5.5 K

vortex motion event

Important parameters: $k_{spring} = 2.1 \pm 0.7 \text{ N/m}$ $f_0 = 71128.28 \text{ Hz}$ $\lambda_{Nb} = 90 \text{ nm}$

Model: Monopole Tip – Monopole Vortex

--J. Pearl, J. Appl. Phys. **37**, 4139 (1966).

$$\frac{dF_z}{dz} = -2k_{spr}\frac{df}{f_0} = \frac{M_z\Phi_0}{2\pi}\frac{-(x-x_0)^2 - (y-y_0)^2 + 2(z+\lambda+d_{offset})^2}{\left((x-x_0)^2 + (y-y_0)^2 + (z+\lambda+d_{offset})^2\right)^{5/2}}$$

 $dF_z/dz \sim (z+\lambda+d)^{-3}$

Depinning Forces in Two Datasets at 5.5 K

Nb Depinning Forces: Quantitative Comparison

Part II: controlled single-vortex manipulation

Motivation: soft condensed matter physics

Motivation: Luttinger liquid physics

vortex wandering in z-direction $\leftarrow \rightarrow$ 1D particles moving in time

Vortices are like 1D bosons in Luttinger liquid!!

Motivation: vortex ratchet computing

Real material parameters for MgB₂:

- <u>Maximum speed</u>: simulations show 315 MHz, pair-breaking is in the THz range.
- <u>Minimum size</u>: $\lambda \sim 100$ nm
- <u>Power dissipation</u>: 10⁻¹⁷ Joules / single cell flip

Fabricated defects in a superconductor, used to pin vortices

Hastings, Reichhardt, Reichhardt, PRL 90, 247004 (2003)

Our Procedure for Single Vortex Manipulation using Magnetic Force Microscopy

Vortex Manipulation Results

Part I: eliminate uncontrolled vortex motion

- bigger magnets
- efficient power lines
- quieter sensors & circuits

Part II: controlled single-vortex manipulation

- model for soft condensed matter
- vortex entanglement
- vortex ratchet automaton
- Luttinger liquid

Future directions

- Vortex studies in YBCO
- Better MFM tips:
 model as monopole

Deng, APL (2004)

- better AFM spatial resolution, correlate with topography

• STM studies: image with $\xi \sim 15$ Å resolution, 100× better than $\lambda \sim 150$ nm

Spatial Resolution

Future: How to Pin Vortices in YBCO?

(1) Screw dislocations
(2) Chemical inclusions
(3) Oxygen dopants
(4) Twin boundaries

STM: spiral growth patterns

Hawley, Science, 1991

STM: twin boundary in CuO

STM: superconducting gap inhomogeneity in $Bi_2Sr_2CaCu_2O_{8+x}$

u₂O_{8+x} chain plane of YBa₂Cu₃O_{7-x}

Eric Hudson, unpublished.

Vortex imaging in Bi₂Sr₂CaCu₂O_{8+x}

Hudson et al, Physica B 329, 1365 (2003).

STM: impurities in Bi₂Sr₂CaCu₂O_{8+x}

Vacancy(?)

Zn

Hudson *et al*, Nature <u>411</u>, 920 (2001). Pan *et al*, Nature 403, 746 (2000).

Ni

Hoffman, Science (2002).

gummary

- Manipulate single vortices with nanoscale control
- Measured directly the depinning forces in Nb
 - \rightarrow already applying same technique to YBCO

Next:

- correlate depinning forces with topography (Moler)
- STM studies to explore higher fields (Hoffman)

