Correlated Electrons at the Nanoscale

The Hoffman lab combines molecular beam epitaxy and high resolution scanning probe techniques to understand and control the nanoscale electronic and magnetic properties of exotic materials.


MBE-grown FeSe
first FeSe
Ba(Fe1-xCox)2As2
Ba(Fe<sub>1-x</sub>Co<sub>x</sub>)<sub>2</sub>As<sub>2</sub>
NdFeAsO1-xFx
NdFeAsO<sub>1-x</sub>F<sub>x</sub>
PrxCa1-xFe2As2
Pr<sub>x</sub>Ca<sub>1-x</sub>Fe<sub>2</sub>As<sub>2</sub>
Bi2Sr2CuO6+x Bi-2201
Bi2Se3
Bi<sub>2</sub>Se<sub>3</sub>
Bi2Sr2CaCu2O8+x Bi-2212 Sb(111)
Sb(111)
VO2
VO<sub>2</sub>
Nd2Fe14B
Nd<sub>2</sub>Fe<sub>14</sub>B
SmB6
SmB<sub>6</sub>
KxSr1-xFe2As2
K<sub>x</sub>Sr<sub>1-x</sub>Fe<sub>2</sub>As<sub>2</sub>
Li0.9Mo6O17
Li<sub>0.9</sub>Mo<sub>6</sub>O<sub>17</sub>
La2SrMn2O7
La<sub>2-2x</sub>Sr<sub>1+2x</sub>Mn<sub>2</sub>O<sub>7</sub>
NbSe2
NbSe<sub>2</sub>

Interested in this work?

In fall 2015, the Hoffman Lab will move to the University of British Columbia in Vancouver, Canada, in order to expand both the SPM and MBE capabilities of the group.